Random matrices: Overcrowding estimates for the spectrum
نویسندگان
چکیده
منابع مشابه
The spectrum of kernel random matrices
We place ourselves in the setting of high-dimensional statistical inference, where the number of variables p in a dataset of interest is of the same order of magnitude as the number of observations n. We consider the spectrum of certain kernel random matrices, in particular n × n matrices whose (i, j)-th entry is f(X ′ iXj/p) or f(‖Xi − Xj‖/p), where p is the dimension of the data, and Xi are i...
متن کاملSparse random matrices: the eigenvalue spectrum revisited
We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of state...
متن کاملThe Spectrum of Heavy Tailed Random Matrices
Take XN to be a symmetric matrix with real independent (modulo the symmetry constraint) equidistributed entries with law P and denote (λ1, · · · , λN) its eigenvalues. Then, Wigner [14] has shown that, if ∫ xdP (x) is finite, N−1 ∑N i=1 δλi/ √ N converges in expectation towards the semi-circle distribution. In this paper, we consider the case where P has a heavy tail and belong to the domain of...
متن کاملThe spectrum of coupled random matrices
0. Introduction 1. Operators Λ and ε with [Λ, ε] = 1 and the δ-function 2. The two-Toda lattice 3. Bilinear Fay identities and a new identity for the two-Toda τ -functions 4. Higher Fay identities for the two-Toda lattice 5. Eigenfunction expansions and vertex operators 6. A remarkable trace formula 7. Two-Toda symmetries and the ASV-correspondence 8. Fredholm determinants of Christoffel-Darbou...
متن کاملSome Estimates of Norms of Random Matrices
We show that for any random matrix (Xij) with independent mean zero entries E‖(Xij)‖ ≤ C “ max i sX
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2018
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2018.06.010